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Abstract—We present a framework for coordinating have competitive relationships, they might be reluctant to
autonomous planning agents. Together, these agents haveshare details of their plans with other agents and do not
to achieve a set of interdependent (elementary) tasks. Eachyant to be interfered during planning their own activities.
of the agents receives a unique subset of tasks to achigve, This motivates the following coordination problem:
but an agent may be dependent on other agents completing How to guarantee that the joint task is planned well

hei ks first. . . . .
(Sogihozfttﬁg ;agse:tslr:;eds to make a plan in order to if we lack information about the details of the plans

achieve its set of subtasks. Task dependencies betweef€Veloped by the participating agents?

tasks assigned to different agents, however, prevent them _ _ _

from making plans independently. Therefore, in order to In this paper we analyze this problem and discuss
guarantee planning autonomy, we need a pre-planning a coordination method that)(guarantees the planning
coordination method. We introduce a coordination method autonomy of each agenti)at the same time ensures the
that can be used to guarantee a solution to the joint exjstence of a joint plan respecting each of the individual
planning problem whaFever individual plans the agents agent plans, andii) does not require knowledge on
may have constructed independently. which plans will be developed by each of the agents.

As a byproduct of our research, we show how this | i that th ist oint task
method can be applied to (re)use existing planning tools n our setup, we assume that there exists a joint tas

in a multi-agent context, by solving a multi-modal logistic 2 consisting of a partially ordered sét of elementary
planning problem by coordinating several autonomous taskst allocated to a number of agents. Each agent
vehicle routing planners. has received a (non-overlapping) subset of tasks and
Keywords: coordination, multi-agent systems, adras to make a plan satisfying the given partial order.
tonomous agents, planning, approximation algorithmsOrder dependencies might exist not only between
tasks given to the same agent, but also between tasks
given to different agents, thereby inducing inter-agent
The problem we want to discuss in this paper applielependencies. The approach we take to solve the
whenever there is a number of autonomous actors acordination problem is to take@e-planningapproach
cepting a joint task that creates dependencies betweercoordination: prior to planning, we try tminimally
these actors. A simple example is a supply chain whagenstrain the agents’ tasks in such a way that agents can
goods have to be transported by several autonomaudbsequently plan their part of the joint task without
agents each having their own business policy, planniteking into account the plans of the other agents.
software and billing systems. Clearly, to manage sudine result of this approach is the development of
dependencies between agents created by the joint tadgprithms and protocols that ensure coordination while
they need to be coordinated in order to guarantee tliaranteeing completely autonomous planning to each
a joint plan will be constructed. Coordination, howevenf the agents.
could easily result in restricting thglanning autonomy
of the agents, i.e., the freedom of the agents to decideThis set-up differs from common multi-agent-
how to perform their tasks. In cases where agents tygordination approaches to coordination in planning. For
to maximize their planning autonomy such restrictionastance, in Ephrati’s research [1], planning and coordi-
might simply be unacceptable. For example, if the agentation steps are interleaved. In the (G)PGP framework
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(e.g. [2], [3]), planning and coordination is an iterativéT’,...,T,} of T, whereT; = {t; € T'| f(t;) = A;}
process, with plans of various levels of abstractiocenotes the set of tasks allocated to ageint As
being exchanged between agents to achieve efficiantresult of this task assignmemt; also inherits the
co-operation. In both approaches, the agents’ plannipgecedence constraints that apply o, i.e., the set
method must be adapted to allow for coordination ef;=< N (7; x T;). Together these sets,; constitute the
the planning process. In our pre-planning coordinatia®t <;,+-o= |J;—,; < of intra-agent constraints, while
approach, however, the coordination takes place at the remaining set of constraints;,;c, == \ <intra CON-
task level and occurs independently from the plannirggitutes the set oihter-agentconstraints. Note that each
process. Since we separate the coordination method fragent A; is responsible for achieving the (composite)
the planning processes, our approach allows existisgbtask(7;, <;).
single-agent planning software to beusedin a multi-
agent planning context.
The structure of this paper is as follows. In Section Il, To achieve the composite tagk;, <;), agentA; has
we present our framework for multi-agent planning ari@ make aplan using its own favorite planning tool
coordination and we identify the coordination problent. We distinguish between thabstract planand the
In Section Ill, we briefly discuss the complexity ofconcrete planof an individual agent4;. The concrete
the coordination problem and show its relation to sonf@an of A; is the direct output of the agent's planning
problems in graph theory. In Section 1V, we present $ystem containing detailed information about actions to
distributed coordination protocol that allows agents fee performed and resources needed. The abstract plan is
achieve coordination while remaining autonomous in tfige translation of the concrete plan in terms of the set
planning process. In Section V, we will show how thi¢f taskst € T; to be performed and their dependency
coordination protocol can be used to solve multi-agetirecedence) relations. Since every feasible plan has
planning problems using (existing) single-agent plannirig specify a partial order of actions to be performed,
systems, and we will present some results we achiewal abstract plan fofT;, <;) is simply a partial order
in solving instances of multi-modal logistic benchmarkZ;, <p,). Clearly, such an abstract plan satisfies the
problems. Section VI concludes the paper by discussiggmposite taskT;, <;) iff <, refines<;, i.e., <;C<,,.
the results and identifying areas for future work. Example 2.1:Suppose that an agent is instructed to
deliver packageg, andp, from a locationA to location
Il. A TASK-ORIENTED MULTI-AGENT PLANNING B and fromB to C, respectively. That is, he is allocated
FRAMEWORK the composite task” = ({t1,t2},0), with ¢; : pickup
We consider problems that have to be solved by sew at A and deliver it atB, andt; : pickup p at
eral autonomous agents, each having their own capalffl-and deliver it atC. Since the agent is assumed to
ities and using their own (planning) tools. Problems wee autonomous, it can decide for itself the best plan
have in mind consist of a s&t of interrelated elementary to accomplish the tasks. Suppose the agent makes the
tasks Such arelementary task, or simplytask is a unit following concrete plan: First, it will travel from its
of work that can be performed by a single agent. A tagkirrent locationX to A. Then it will pickup p; and
t1 depends on another taskif there exists grecedence it will go to location B delivering package,. Hereafter
constraintbetween them: If a task is preceded by task the agent will pickupp; in B and will take a detour
t1, denoted byt; < t,, the execution of, may not start via Y to C' in order to have lunch. It will stop i€ to
until ¢; has finished; for example, achievirtg results deliver p, and then finally will return home to.
in creating resources needed to perform Such a set From a coordination point of view, several pieces of
of interdependent tasks is calledcamposite taskA information are not of interest, namely: the exact location
composite taskl = (T, <) therefore is a non-emptyfrom which the agents starts, going % for lunch,
set of tasksl” = {ti,...t,}, partially ordered by a setand returning home t&. The only relevant information
of precedence constraints C T x T. This composite derived from the concrete plan occurs in thbstract
task must be performed by a sdt= {A4;,... A,} of plan specifying that the agent will perforta beforet,.
autonomous planning agents.

We assume that the tasks Thhave been assigned to_ " - .
constitutes a non-trivial problem. For example, even making an

the agents ind by some (Su_rjeCtive) j[a_‘Sk_ assignmeniptimal plan for a set of unrelated pickup-delivery orders constitutes
f T — A thereby inducing apartitioning T = an NP-hard problem.

A. Tasks, Plans and Refinements

YIn general, planning to achieve such a set of elementary tasks



Thus, the agent’s abstract plan is the partial ofd&r<,) Fig. 1. A composite task, augmented two potential refinements
with ¢; <, to. Indeed, this plan satisfigq", ), because andr2 and a potential constrainf.
<p Clearly refines).

To check whether a concrete plan can be coordinated
with the plan of another agent, we only need the informggd, prior to planning, a seh = (JA; of additional
tion contained in its abstract plérHence, from now on constraints to the set of precedence constraintMore
we only use abstract plans of agents and assume that theycisely, each set\; has to be added to each set
are feasible, i.e., simple refinements of the compos¢ precedence constraints; such that the following

tasks given to the agents. conditions are satisfied:
B. The Coordination Problem 1) foralli, (T;, <; UA;) constitutes a composite task,
i.e., <; UA, is a partial order refining<;;

A coordination algorithm or protocol for autonomous
planning agents should ensure that, after receiving its
part T; of the joint task7, (i) each autonomous agent
A; is allowed to construct its plan independently from the
other agents,ii) there is a simple way to combine their
plans into a joint plan, while respecting each individual
plar®, and {ii) both these objectives should be achieved
irrespective of the choice of the plans constructed by the o ) ] ]
individual agents. The coordination prpplerﬂhen is, given a composite

Clearly, a simple task allocation alone does not alwa{@Sk (1 <) and a partitionindl’ = T1,..., T, of T', to
guarantee the existence of such a feasible joint plan:iNd @ minimumset A = {A;,..., A,} of additional

Example 2.2:Consider the composite task depictearecedence constraints to ensure a feasible joint plan
in Figure 1, where the tasks and t, are allocated whatever feasible abstract plans might be constructed by

to agentA; and the tasksts and t; are allocated th€ individual agents. _ _
to agentA,. Precedence relations are represented byEXample 2.3:Continuing the previous example, in
arcs: e.g. the are; betweent, andt, represents the Figure 1, the set\ = {{c,},0} constitutes a minimal
precedence relation < t». The arcse; ande, together coordination setn YVhICh agent4, rfecelves constraint;
constitute the set of precedences (so the set of intPdld agentd, receives no constraints. Note that, due to
agent precedences is empty). The dotted-arepresents the congtrambl, no subsequent_ reflneme_nts can cregte
a feasiblerefinementfor agent A;: since there is no & cycle in the precedence relation. That is, after adding

precedence relation betweenandt,, agentA; might constraintcy, every feasible individual plan each of the
come up with a plan where, is executed prior to agents might construct can always be combined into a

t1. Similarly, agentA, might decide to introduce thef€asible joint plan.
refinementry, by planning to execute, beforets;. Each Hl. THE COMPLEXITY OF THE COORDINATION

_of these plans is a perfectly feas_lble plan .meetlng tthOBLEM AND RELATIONS TO PROBLEMS IN GRAPH
intra-agent constraints. However, if both refinements THEORY

andry are made, then combining these plans into a joint
plan that respects them both results in an infeasible jointElsewhere 7], we have shown that the problem to
plan, due to the existence of a cyele— ro — e; — ;. decide whether or not a given sét of coordination
At run-time, such a cycle in a joint plan would cause &cS is & solution to the coordination problem, is co-
deadlock, since it requires e.t. to be executed beforeNP-complete. As a result, the decision variant of the
t,, and alsot, to be executed beforg. coordination problefturns out to beX}-completé. A

It can be easily shown that the only possibflitio Ccomplexity analysis also showed the following results:

ensure a solution to the coordination problem is td) if each agent has only two tasks to achieve, the deci-
sion variant of the coordination problem is NP-complete;

2We assume no dependencies between the agents other than the

2) for every conceivable sebs = {pi,...,pn}
of individual plans of agents where eagh =
(T3, <p,) is a plan for(7;, <; UA;), the structure
= (ULiTi= U =p, UrU <) is a
partially ordered set, i.eP is a feasible joint plan
that respects the individual plans and refines the
composite taskKT’, <).

precedence constraints between their tasks. ®This is the problem to decide whether there exists a coordination
3That is, there should be no need for additional (re)planning fset of sizeK or less.
any agent. 5Both proofs rely on a reduction from the path with forbidden pairs

“4If we require that planning and coordination be separated. (PWFP) problem.



(ii) if each agent has four tasks to achieve, the probldéms been found, then the correspondihg= F~! is a
to decide whetheA = () is a solution to the coordinationsolution of the original coordination instancd.f
problem (this is the coordinatiodetectionproblem) is  Unfortunately, although this approach is sound, i.e.,
co-NP-complete and the coordination problem itself svery solution found by this reduction constitutes a
in X¥; (iw7) if each agent has at least 8 tasks to achiewsglution to the coordination problem, it has two obvious
the coordination problem i&)-complete. disadvantages: First of all, the reduction may sometimes
Due to its complexity, it is very unlikely that thebe too constraining Figure 2 shows an instance where
coordination problem can be solved in reasonable timen SFAS solution will constrain the agent's planning
In this section we will use a reduction to the minimunfreedom more than necessary: one of the dashed (re-
subset feedback arc set (SFAS) probleto find an finement) arcs will be placed in a feedback arc set, even
approximatesolution to the coordination problem. Thahough the instance is already coordinated: the only way
minimum subset feedback arc set (SFAS) problem is arcyclic joint plan can be created is if agefd chooses
extensively studied minimization problem [4], and fasefinementsr; and .. But such a refinement cannot
O(log |V |loglog |V|)-approximations have been develoccur, because it would create a cycleAn’s plan. As
oped [5], [4]. By reducing the coordination problem t@ result, theO(log(|V]) loglog(|V]))-ratio for SFAS is
the SFAS problem we could use these approximatiot inherited by the coordination problem. Secondly, the
algorithms to solve the coordination problem.

Briefly, this reduction is based on the following idea: (® - ~@
A solution to the coordination problem consists in find- [
ing additional constraint&\ such that (whatever intra-
agent refinement arcs are added) the resulting graph Ty
cannot become cyclic. So why not construct a graph that —

already contains all possible mtra'?‘g_ent reflnements 31519 2. Despite the presence of an inter-agent cycle, this instance is
then select a feedback arc getonsisting of intra-agent coordinated.

arcs. If weinvert all arcs inF' then adding this sef !

should break every such cycle. To make a Coordmat'%i?{)roximation algorithms applied to solve the coordi-
a

set, the inverted feedback arc set only needs to bredk. : . )
. ) . nation problem arecentralized algorithms, leaving no
cycles that involve more than one agent; cycles within : ) .
0 Bortunlty for the agents to influence the coordination
an agent are already taken care of by that agent (becaurocess
we assume agent plans to be acyclic). So we need to rﬁ)ap '
coordination instances to minimusubsetfeedback arc
set instances. _ o
Specifically, the transformation from the coordination TO allow agents to influence the coordination process
problem to SFAS is as follows: given a coordinatiod® Will now present adistributed algorithm to solve

IV. ADISTRIBUTED COORDINATION ALGORITHM

instance(T, (T4, ..., T,)), construct an SFAS instancetne _goordination problem in _vvhich an agent receives_

(V, A, B) such that adqlltlonal precet_ie_nce constraints (a subset of the co_ordl-
V=T nation set) o-nly if _|t decides to accept thege cqnstralpts.
) At = [ U AL U - U AJ*H, with The algorithm is based on the following idea: in

constructing a plan fof7;, <;), each agen#l; can safely
refinements for agent.; start to make a plan for a subset of tagisC T; that are
3) B =<inser, i.€., ONly ttl{ose cycles are considerel°t dependent (via inter-agent constrairtg,:.,.) upon

e {asks assigned to other agents. To determine whether a

that intersect the set of inter-agent dependencies, : :
g P given task inT; depends on a task assigned to another

To obtain a coordination set, we compute a feedback ¢.nt e let the agents use a commbtackboard This

set [ of the above SFAS instance, and then we invegf,cipoard stores the inter-agent dependency relations.
the arcs inF to obtain a solutionA = F~!. We can

easily show that if a subset-minimal feedback arc et

A; = (T; x T;) \ (=; U <) the set of possible

80nly arcs in{Ah e ,An} may be considered for placement in
F, since arcs in< may not be inverted.

"The problem given a digrap = (V, A), and a subseB C A 9This is not surprising, because, assumiRg# NP, the coordi-
to find a minimum subsef’ C A that intersects every cycle i& nation problem is outside the clad&”? 0. Minimum SFAS, however,
that contains at least one arc Bf is known to belong tavPO.



Once each agentl; has selected such a subggt 4
(which may be empty), the agent informs the blackboard Recall that tasks in a block! must precede all tasks
that the taskst in T} can be removed from the sein the block Tf“. In fact, the setA; of additional
T;, together with all precedence constraints-nthat constraints for agenti; is specified by:
involve taskt. Then the agents iteratively start a new -
round where each agemt; again selects a subsé}2 A — U 79 5 I
of the set of remaining tasks not dependent on tasks v g ¢
assigned to other agents. These rounds continue until
after, say,k < |T| rounds the set of remaining taskd hus, the more blocks the partitioning contains, the more
is empty. As a result, the original task of agentA; restrictions are placed on the set of tasks to be per-
is partitioned into a set ok possibly empty subsetsformed. Since more precedence restrictions also restrict

J=1

T!,...,TF. Now the coordination sed; for agentA4; the freedom of planning of an agent, and thereby reduce
is constructed as follows: first, all empty subsg}sin the possibility to find cheaper plans, an agent might be
{Tij ?:1 are removed. Next, for every=1,...,k —1 reluctant to split its set of tasks too soon. Instead, it
and for every pair of tasks ¢': if ¢ € T/ and¢’ e T/, might prefer to postpone splitting off a block unti} is
the precedence constraiftt ) is addéd toA,;. ! sufficiently large. If possible, an agent would thus prefer
To obtain these set&’, each agentd; executes the to adopt alazy partitioning strategy, that is: an agent
following algorithmic sclheme: would choosel? = () in every round of Algorithm 1,
unlessF; = T;, in which case it choose%! = T;.
Algorithm 1 Clearly though, if all agents are lazy (ard,.ie- iS NON-

empty), then the algorithm deadlocks.
To ensure coordination, more cooperative strategies
are needed. The opposite of a lazy agent idilgent

Input: a composite task (T;, <;) assigned to agent A;
Output: a linearly ordered partition (T}, ..., TF) of T;

begin agent: in every round of Algorithm 1, a diligent agent
1. letk:=0 choosed? = F;. If all agents are diligent, the algorithm
2. while T; # () do never deadlocks, and a coordination solution is found.
21 k:=k+1 Moreover, we can give some guarantee with regard to the

2.2. ask the blackboard for the subset F; C T; of worst-case performance of the partitioning, as it is not
tasks that are prerequisite-fregi.e., those tasks t in  hard to see that if all agents are diligent, then the depth
T; for which there exists not' € Tj, j # i, such of each agent’s partitioning (the valdefor T}, ...TF)

thatt' <t is at most the minimum of7;| and the depth of the

2.3. Tf := Select_SubsetFrom(F;) partial order of the complete task.

24. if Ti’“ # () then In some cases, when a subset of the agents are
24.1. LetT; =T, — T} lazy, and the rest of the agents are diligent, we can
2.4.2. Send the set TF to the blackboard still guarantee that Algorithm 1 runs deadlock-free. The

2.5. else dependencies between agents can be visualized in the
251 k:=k—-1 agent dependency grapfihe agent dependency graph

3. return (T}, ..., TF) is a directed graplt’ = (V, E), whereV = A (the set
end of agents), and = (A;, A;) € E iff there exist tasks

In each round of the algorithm, agem; splits andt’ such thatt € A;, ¢’ € A;, andt < t'. If the agent
off a (possibly empty) set of taskg* from 7;. In dependency graph restricted to the set of lazy agents is
Step 2.2, agen#d; asks the blackoard to compute thecyclic, then Algorithm 1 will not deadlock.
set F; of tasks inT; that are free of prerequisites. The worst-case performance of the coordination-by-
In Step 2.3, 4; makes a decision which subsg{* partitioning approach, measured in terms of the cost
of F* it will split off in this round. Note that if no of the resulting plan, is bounded by the depth of the
deadlock occurs, each agest is able to determine its partitioning each agent creates for his set of tasks. If
subset of coordination arcs. Observe that if all agerds agentA; splits his set of taskd; into k& segments
repeatedly decide to ‘split off’ the empty set, i.ell,..., Tk, then the cost of the combined plan for All
they wait until they can choose a subtaBk as large segments can be at mdstimes as high as a plan for his
as possible, one or more agent processes might deadlagiconstrained set of taskg. As an example, consider



the case where an agent only has two taskandi,. If We applied the coordination method specified by Al-
there exists no precedence constraint betwgeandt,, gorithm 1 to these logistic problems. The airplanes were
then we might imagine that an agent can execute batbnfigured as one coalition using a lazy strategy and each
tasks in parallel. By introducing the constraint< ¢, truck adopted a diligent strategy. This approach allows
the tasks can no longer be executed in parallel, so thiagle-agent planners to be reused in the multi-agent
cost of the plan may increase — but with no more thagsianning context; we assigned very simple route planners
the cost of the original plan, since at most all work dorte both the trucks and the plane agents and applied the
on t; must be redone fots. coordination approach to allow these planners to plan
In case all agents are diligent, this means that no agenhcurrently and independently from each other. The
can have a worst-case plan cost higher thaimes his airplanes’ lazy strategy guarantees that optimal airplane
optimal plan, withd the depth of partial order of theplans can be found. But surprisingly, in this benchmark
composite taskr . set, even though trucks adopt the diligent strategy, they
are still allowed to execute their optimal plans. The
result is that if the airplane coalition and the trucks use
optimal solvers for their local planning problems, then
Our approach enables existing stand-alone plannéne resulting joint plan will also be optimal.
to be used in solving planning problems that require The local planning problems are of such a small
the joint effort of several planners that are dependesitze that the whole coordination approach including all
upon each other. In this section we will show how ouocal planning activities runs extremely fast. Figure 3
coordination method can be used to compose suchstows the cpu time needed by our coordination approach
multi-agent planning system for logistic planning. compared to the top three hand-tailored planning systems
The logistics domain comprises transportation @ff the competition. Our cpu times were obtained using
packages in an infrastructure consisting of airplanasptimal local solvers for the smaller instances; for the
trucks, cities and locations. Each city consists of a setlafger instances, we used local approximations for the
locations, one of which is the city’s airport. Within a cityyoute planning problems. In spite of using local approx-
trucks can transport packages; between cities, airplan@ations, we still outperformed the AIPS competitors in
can transport packages. The aim is to make a plan terms of plan quality, as shown in Figure 4. Although
picking up a set of packages at their source location amdLplanner and SHOP produce plans of comparable
to deliver them at their destination location (which magjuality, System-R produces considerably longer plans,

V. APPLICATION TO COORDINATION IN
MULTI-MODAL LOGISTICS

be located in a different city). and its results do not fit in the graph of Figure 4.
Intra-city orders, i.e., the transportation of packages
with source and destination in the same city, can be VI. RELATED AND FUTURE WORK

carried Ol.Jt by a smglg truck. '”tef city orders, however, Except for the multi-agent planning methods already
may require cooperation among airplanes and trucks. For .. . . . .

mentioned in the introduction, our approach is also
example, suppose a package must be transported frgm

location A in city C, to location B in city C,: a truck 8osely related tp the work of Shehpry and_ Kraus [7]
o : v where they consider a set of tasks with possibly a set of
will drive the package fromd to the airport of cityC,,, . L
. : precedence constraints that have to be distributed among
then a plane will fly the package to the airport of aity,

: ) . . _(coalitions) of agents capable of performing certain
and finally a truck will deliver the package to Iocatlor$ ) g pable b ning :
B subsets of tasks. However, an important difference with

our approach is that Shehory and Kraus assume that

In the world’s second planning & scheduling com- . : :

" ) rforming these tasks requires no planning actity.
petlthn, hosted_ by the AIPS'00 conferenc_e [6,]’ seve_rEEnce’ coordination can be achieved simply by assigning
planning domains were to test the competitors’ planni

) NGsks to agents. Therefore, their approach is geared
ZyStg;zh ﬁllwﬁlizr? ((?))(r)]ecolrgrﬁ)ﬁitr:torz :tse?n ioﬁngtz“szf é/vards finding the best allocation of tasks to agents.
PP P 9 Sy P our approach, however, we assume that a set of

28:\'/?:3 Iﬁ(reallgrvi?I?r!istsalr?ctezergfﬁilrsérsu;tucroeﬁp\lse fégsr‘:lltnterrelated tasks has already been allocated to agents
ving 9 q P Pihd we concentrate on methods to ensure coordination
tational problem to be solved. Most of the systems gave

up on the larger-sized prObIem_ instances. Only a fewioygre accurately, they assume no difference between planning for
planners were able to solve all instances. one task and planning for two or more tasks.
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Fig. 3. CPU times required by the hand-tailored planning systerifg. 4. The number of steps (actions) required by the hand-tailored
to solve the additional track of logistic problems. planning systems to solve the additional track of logistic problems.

while leaving the agents completely free in the planning vol. 21, no. 5, pp. 1167-1183, 1991. [Online]. Available:
hile | g the agent pletely f the pl g vol I labl
of their set of tasks. http://citeseer.nj.nec.com/durfee91partial.html

. K. S. Decker and V. R. Lesser, “Designing a family
Regarding future work, more work needs to be dor{g of coordination algorithms,” in Proceedings of the

on characterizing stable strategies for planning agents. Thirteenth International Workshop on Distributed Artificial
For the logistic benchmark problems of the AIPS’00, Intelligence (DAI-94) 1994, pp. 65-84. [Online]. Available:
we have identified stable agent strategies for Algorith[n] http://citeseer.nj.nec.com/decker95designing.html

1: a truck will ch the dili t strat | .l#] G. Even, J. Naor, B. Schieber, and M. Sudan, “Approximating
- a truck will choose the diligent strategy, a plane wi minimum feedback sets and multicuts in directed graphkyo-

choose the lazy strategy, allowing each agent to compute rithmica, vol. 20, no. 2, 1998.
its 0ptima| p|an. For genera| Composite tasks, or even fi6t P. _Seymour, “Packing directed circuits fractionallfZombina-
general multi-modal logistic instances, it is likely that  ©rics vol. 15, 1995. . N " .
. .. . ] F. Bacchus, “Aips’00 planning competition (artificial planning

we have to come up .V'Vlth negotiation mechamsr_ns N and scheduling 2000)”Al" Magazine, 2001.
order to establish stability. Rosenschein and Zlotkin [81] O. Shehory and S. Kraus, “Methods for task allocation via agent

" . i . J. S. Rosenschein and G. ZlotkiRules of encounter: Designing
pegotlatlon mechanisms: the negqtlatlon protocol mdg Conventions for Automated Negotiation among Comput®sT
induce agents to choose strategies that are globally press, 1994.
desirable, yet individually rational. In a coordination-by-
partitioning algorithm such as Algorithm 1, a globally
desirable strategy must ensure that the algorithm termi-
nates, and consequently returns a coordination set. An
individually rational strategy must make it worthwhile

for an agent to accept additional precedence constraints.
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