
Coordinating Autonomous Planners

Adriaan ter Mors∗, Jeroen Valk∗ and Cees Witteveen∗†
∗ Faculty of Electrical Engineering, Mathematics and Computer Science,

Delft University of Technology, P.O. Box 5031, 2600 GA Delft, The Netherlands
Email: {a.w.termors, j.m.valk, c.witteveen}@ewi.tudelft.nl
† Center for Mathematics and Computer Science (CWI),
P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

Email: c.witteveen@cwi.nl

Abstract— We present a framework for coordinating
autonomous planning agents. Together, these agents have
to achieve a set of interdependent (elementary) tasks. Each
of the agents receives a unique subset of tasks to achieve,
but an agent may be dependent on other agents completing
(some of) their tasks first.

Each of the agents needs to make a plan in order to
achieve its set of subtasks. Task dependencies between
tasks assigned to different agents, however, prevent them
from making plans independently. Therefore, in order to
guarantee planning autonomy, we need a pre-planning
coordination method. We introduce a coordination method
that can be used to guarantee a solution to the joint
planning problem whatever individual plans the agents
may have constructed independently.

As a byproduct of our research, we show how this
method can be applied to (re)use existing planning tools
in a multi-agent context, by solving a multi-modal logistic
planning problem by coordinating several autonomous
vehicle routing planners.

Keywords: coordination, multi-agent systems, au-
tonomous agents, planning, approximation algorithms.

I. I NTRODUCTION

The problem we want to discuss in this paper applies
whenever there is a number of autonomous actors ac-
cepting a joint task that creates dependencies between
these actors. A simple example is a supply chain where
goods have to be transported by several autonomous
agents each having their own business policy, planning
software and billing systems. Clearly, to manage such
dependencies between agents created by the joint task,
they need to be coordinated in order to guarantee that
a joint plan will be constructed. Coordination, however,
could easily result in restricting theplanning autonomy
of the agents, i.e., the freedom of the agents to decide
how to perform their tasks. In cases where agents try
to maximize their planning autonomy such restrictions
might simply be unacceptable. For example, if the agents

have competitive relationships, they might be reluctant to
share details of their plans with other agents and do not
want to be interfered during planning their own activities.

This motivates the following coordination problem:
How to guarantee that the joint task is planned well
if we lack information about the details of the plans
developed by the participating agents?

In this paper we analyze this problem and discuss
a coordination method that (i) guarantees the planning
autonomy of each agent, (ii) at the same time ensures the
existence of a joint plan respecting each of the individual
agent plans, and (iii) does not require knowledge on
which plans will be developed by each of the agents.

In our setup, we assume that there exists a joint task
T consisting of a partially ordered setT of elementary
tasks t allocated to a number of agents. Each agent
has received a (non-overlapping) subset of tasks and
has to make a plan satisfying the given partial order.
Order dependencies might exist not only between
tasks given to the same agent, but also between tasks
given to different agents, thereby inducing inter-agent
dependencies. The approach we take to solve the
coordination problem is to take apre-planningapproach
to coordination: prior to planning, we try tominimally
constrain the agents’ tasks in such a way that agents can
subsequently plan their part of the joint task without
taking into account the plans of the other agents.
The result of this approach is the development of
algorithms and protocols that ensure coordination while
guaranteeing completely autonomous planning to each
of the agents.

This set-up differs from common multi-agent-
coordination approaches to coordination in planning. For
instance, in Ephrati’s research [1], planning and coordi-
nation steps are interleaved. In the (G)PGP framework

(e.g. [2], [3]), planning and coordination is an iterative
process, with plans of various levels of abstraction
being exchanged between agents to achieve efficient
co-operation. In both approaches, the agents’ planning
method must be adapted to allow for coordination of
the planning process. In our pre-planning coordination
approach, however, the coordination takes place at the
task level and occurs independently from the planning
process. Since we separate the coordination method from
the planning processes, our approach allows existing
single-agent planning software to bereusedin a multi-
agent planning context.

The structure of this paper is as follows. In Section II,
we present our framework for multi-agent planning and
coordination and we identify the coordination problem.
In Section III, we briefly discuss the complexity of
the coordination problem and show its relation to some
problems in graph theory. In Section IV, we present a
distributed coordination protocol that allows agents to
achieve coordination while remaining autonomous in the
planning process. In Section V, we will show how this
coordination protocol can be used to solve multi-agent
planning problems using (existing) single-agent planning
systems, and we will present some results we achieved
in solving instances of multi-modal logistic benchmark
problems. Section VI concludes the paper by discussing
the results and identifying areas for future work.

II. A TASK-ORIENTED MULTI -AGENT PLANNING

FRAMEWORK

We consider problems that have to be solved by sev-
eral autonomous agents, each having their own capabil-
ities and using their own (planning) tools. Problems we
have in mind consist of a setT of interrelated elementary
tasks. Such anelementary taskt, or simplytask, is a unit
of work that can be performed by a single agent. A task
t1 depends on another taskt2 if there exists aprecedence
constraintbetween them: If a taskt2 is preceded by task
t1, denoted byt1 ≺ t2, the execution oft2 may not start
until t1 has finished; for example, achievingt1 results
in creating resources needed to performt2. Such a set
of interdependent tasks is called acomposite task. A
composite taskT = (T,≺) therefore is a non-empty
set of tasksT = {t1, . . . tm}, partially ordered by a set
of precedence constraints≺ ⊆ T × T . This composite
task must be performed by a setA = {A1, . . . An} of
autonomous planning agents.

We assume that the tasks inT have been assigned to
the agents inA by some (surjective) task assignment
f : T → A thereby inducing apartitioning T =

{T1, . . . , Tn} of T , where Ti = {tj ∈ T | f(tj) = Ai}
denotes the set of tasks allocated to agentAi. As
a result of this task assignmentAi also inherits the
precedence constraints that apply toTi, i.e., the set
≺i=≺ ∩ (Ti × Ti). Together these sets≺i constitute the
set≺intra=

⋃n
i=1 ≺i of intra-agent constraints, while

the remaining set of constraints≺inter=≺ \ ≺intra con-
stitutes the set ofinter-agentconstraints. Note that each
agent Ai is responsible for achieving the (composite)
subtask(Ti,≺i).

A. Tasks, Plans and Refinements

To achieve the composite task(Ti,≺i), agentAi has
to make aplan using its own favorite planning tool
1. We distinguish between theabstract plan and the
concrete planof an individual agentAi. The concrete
plan of Ai is the direct output of the agent’s planning
system containing detailed information about actions to
be performed and resources needed. The abstract plan is
the translation of the concrete plan in terms of the set
of taskst ∈ Ti to be performed and their dependency
(precedence) relations. Since every feasible plan has
to specify a partial order of actions to be performed,
an abstract plan for(Ti,≺i) is simply a partial order
(Ti,≺pi

). Clearly, such an abstract plan satisfies the
composite task(Ti,≺i) iff ≺pi

refines≺i, i.e.,≺i⊆≺pi
.

Example 2.1:Suppose that an agent is instructed to
deliver packagesp1 andp2 from a locationA to location
B and fromB to C, respectively. That is, he is allocated
the composite taskT = ({t1, t2}, ∅), with t1 : pickup
p1 at A and deliver it atB, and t2 : pickup p2 at
B and deliver it atC. Since the agent is assumed to
be autonomous, it can decide for itself the best plan
to accomplish the tasks. Suppose the agent makes the
following concrete plan: First, it will travel from its
current locationX to A. Then it will pickup p1 and
it will go to locationB delivering packagep1. Hereafter
the agent will pickupp2 in B and will take a detour
via Y to C in order to have lunch. It will stop inC to
deliver p2 and then finally will return home toX.

From a coordination point of view, several pieces of
information are not of interest, namely: the exact location
from which the agents starts, going toY for lunch,
and returning home toX. The only relevant information
derived from the concrete plan occurs in theabstract
plan specifying that the agent will performt1 beforet2.

1In general, planning to achieve such a set of elementary tasks
constitutes a non-trivial problem. For example, even making an
optimal plan for a set of unrelated pickup-delivery orders constitutes
an NP-hard problem.

Thus, the agent’s abstract plan is the partial order(T,≺p)
with t1 ≺p t2. Indeed, this plan satisfies(T, ∅), because
≺p clearly refines∅.

To check whether a concrete plan can be coordinated
with the plan of another agent, we only need the informa-
tion contained in its abstract plan.2 Hence, from now on
we only use abstract plans of agents and assume that they
are feasible, i.e., simple refinements of the composite
tasks given to the agents.

B. The Coordination Problem

A coordination algorithm or protocol for autonomous
planning agents should ensure that, after receiving its
part Ti of the joint taskT , (i) each autonomous agent
Ai is allowed to construct its plan independently from the
other agents, (ii) there is a simple way to combine their
plans into a joint plan, while respecting each individual
plan3, and (iii) both these objectives should be achieved
irrespective of the choice of the plans constructed by the
individual agents.

Clearly, a simple task allocation alone does not always
guarantee the existence of such a feasible joint plan:

Example 2.2:Consider the composite task depicted
in Figure 1, where the taskst1 and t4 are allocated
to agent A1 and the taskst2 and t3 are allocated
to agentA2. Precedence relations are represented by
arcs: e.g. the arce1 betweent1 and t2 represents the
precedence relationt1 ≺ t2. The arcse1 ande2 together
constitute the set of precedences (so the set of intra-
agent precedences is empty). The dotted arcr1 represents
a feasiblerefinementfor agent A1: since there is no
precedence relation betweent1 and t4, agentA1 might
come up with a plan wheret4 is executed prior to
t1. Similarly, agentA2 might decide to introduce the
refinementr2, by planning to executet2 beforet3. Each
of these plans is a perfectly feasible plan meeting the
intra-agent constraints. However, if both refinementsr1

andr2 are made, then combining these plans into a joint
plan that respects them both results in an infeasible joint
plan, due to the existence of a cyclee1 − r2 − e2 − r1.
At run-time, such a cycle in a joint plan would cause a
deadlock, since it requires e.g.t1 to be executed before
t2, and alsot2 to be executed beforet1.

It can be easily shown that the only possibility4 to
ensure a solution to the coordination problem is to

2We assume no dependencies between the agents other than the
precedence constraints between their tasks.

3That is, there should be no need for additional (re)planning for
any agent.

4If we require that planning and coordination be separated.

Fig. 1. A composite task, augmented two potential refinementsr1

andr2 and a potential constraintc1.

add, prior to planning, a set∆ =
⋃

∆i of additional
constraints to the set of precedence constraints≺. More
precisely, each set∆i has to be added to each set
of precedence constraints≺i such that the following
conditions are satisfied:

1) for all i, (Ti,≺i ∪∆i) constitutes a composite task,
i.e.,≺i ∪∆i is a partial order refining≺i;

2) for every conceivable setpA = {p1, . . . , pn}
of individual plans of agents where eachpi =
(Ti,≺pi

) is a plan for(Ti,≺i ∪∆i), the structure
P = (

⋃n
i=1 Ti,≺ ∪ ≺p1 ∪ · · · ∪ ≺pn

) is a
partially ordered set, i.e.,P is a feasible joint plan
that respects the individual plans and refines the
composite task(T,≺).

The coordination problemthen is, given a composite
task (T,≺) and a partitioningT = T1, . . . , Tn of T , to
find a minimumset ∆ = {∆1, . . . ,∆n} of additional
precedence constraints to ensure a feasible joint plan
whatever feasible abstract plans might be constructed by
the individual agents.

Example 2.3:Continuing the previous example, in
Figure 1, the set∆ = {{c1}, ∅} constitutes a minimal
coordination setin which agentA1 receives constraintc1

and agentA2 receives no constraints. Note that, due to
the constraintc1, no subsequent refinements can create
a cycle in the precedence relation. That is, after adding
constraintc1, every feasible individual plan each of the
agents might construct can always be combined into a
feasible joint plan.

III. T HE COMPLEXITY OF THE COORDINATION

PROBLEM AND RELATIONS TO PROBLEMS IN GRAPH

THEORY

Elsewhere [?], we have shown that the problem to
decide whether or not a given set∆ of coordination
arcs is a solution to the coordination problem, is co-
NP-complete. As a result, the decision variant of the
coordination problem5 turns out to beΣ p

2 -complete6. A
complexity analysis also showed the following results:
(i) if each agent has only two tasks to achieve, the deci-
sion variant of the coordination problem is NP-complete;

5This is the problem to decide whether there exists a coordination
set of sizeK or less.

6Both proofs rely on a reduction from the path with forbidden pairs
(PWFP) problem.

(ii) if each agent has four tasks to achieve, the problem
to decide whether∆ = ∅ is a solution to the coordination
problem (this is the coordinationdetectionproblem) is
co-NP-complete and the coordination problem itself is
in Σ p

2 ; (iii) if each agent has at least 8 tasks to achieve,
the coordination problem isΣ p

2 -complete.
Due to its complexity, it is very unlikely that the

coordination problem can be solved in reasonable time.
In this section we will use a reduction to the minimum
subset feedback arc set (SFAS) problem7 to find an
approximatesolution to the coordination problem. The
minimum subset feedback arc set (SFAS) problem is an
extensively studied minimization problem [4], and fast
O(log |V | log log |V |)-approximations have been devel-
oped [5], [4]. By reducing the coordination problem to
the SFAS problem we could use these approximation
algorithms to solve the coordination problem.

Briefly, this reduction is based on the following idea:
A solution to the coordination problem consists in find-
ing additional constraints∆ such that (whatever intra-
agent refinement arcs are added) the resulting graph
cannot become cyclic. So why not construct a graph that
already contains all possible intra-agent refinements and
then select a feedback arc setF consisting of intra-agent
arcs. If weinvert all arcs inF then adding this setF−1

should break every such cycle. To make a coordination
set, the inverted feedback arc set only needs to break
cycles that involve more than one agent; cycles within
an agent are already taken care of by that agent (because
we assume agent plans to be acyclic). So we need to map
coordination instances to minimumsubsetfeedback arc
set instances.

Specifically, the transformation from the coordination
problem to SFAS is as follows: given a coordination
instance(T , (T1, . . . , Tn)), construct an SFAS instance
(V,A, B) such that

1) V = T ;
2) A+ = [≺ ∪ ∆̂1 ∪ · · · ∪ ∆̂n]+, with

∆̂i = (Ti × Ti) \ (≺i ∪ ≺−1
i) the set of possible

refinements for agentAi;
3) B =≺inter , i.e., only those cycles are considered

that intersect the set of inter-agent dependencies.

To obtain a coordination set, we compute a feedback arc
set F of the above SFAS instance, and then we invert
the arcs inF to obtain a solution∆ = F−1. We can
easily show that if a subset-minimal feedback arc setF

7The problem given a digraphG = (V, A), and a subsetB ⊆ A
to find a minimum subsetF ⊆ A that intersects every cycle inG
that contains at least one arc ofB.

has been found, then the corresponding∆ = F−1 is a
solution of the original coordination instance [?].8

Unfortunately, although this approach is sound, i.e.,
every solution found by this reduction constitutes a
solution to the coordination problem, it has two obvious
disadvantages: First of all, the reduction may sometimes
be too constraining9. Figure 2 shows an instance where
an SFAS solution will constrain the agent’s planning
freedom more than necessary: one of the dashed (re-
finement) arcs will be placed in a feedback arc set, even
though the instance is already coordinated: the only way
a cyclic joint plan can be created is if agentA2 chooses
refinementsr1 and r2. But such a refinement cannot
occur, because it would create a cycle inA2’s plan. As
a result, theO(log(|V |) log log(|V |))-ratio for SFAS is
not inherited by the coordination problem. Secondly, the

r1

r2

Fig. 2. Despite the presence of an inter-agent cycle, this instance is
coordinated.

approximation algorithms applied to solve the coordi-
nation problem arecentralizedalgorithms, leaving no
opportunity for the agents to influence the coordination
process.

IV. A D ISTRIBUTED COORDINATION ALGORITHM

To allow agents to influence the coordination process
we will now present adistributed algorithm to solve
the coordination problem in which an agent receives
additional precedence constraints (a subset of the coordi-
nation set) only if it decides to accept these constraints.

The algorithm is based on the following idea: in
constructing a plan for(Ti,≺i), each agentAi can safely
start to make a plan for a subset of tasksT 1

i ⊆ Ti that are
not dependent (via inter-agent constraints≺inter) upon
tasks assigned to other agents. To determine whether a
given task inTi depends on a task assigned to another
agent, we let the agents use a commonblackboard. This
blackboard stores the inter-agent dependency relations.

8Only arcs in{∆̂1, . . . , ∆̂n} may be considered for placement in
F , since arcs in≺ may not be inverted.

9This is not surprising, because, assumingP 6= NP , the coordi-
nation problem is outside the classNPO . Minimum SFAS, however,
is known to belong toNPO .

Once each agentAi has selected such a subsetT 1
i

(which may be empty), the agent informs the blackboard
that the taskst in T 1

i can be removed from the set
Ti, together with all precedence constraints in≺ that
involve task t. Then the agents iteratively start a new
round where each agentAi again selects a subsetT 2

i

of the set of remaining tasks not dependent on tasks
assigned to other agents. These rounds continue until
after, say,k ≤ |T | rounds the set of remaining tasks
is empty. As a result, the original taskTi of agentAi

is partitioned into a set ofk possibly empty subsets
T 1

i , . . . , T k
i . Now the coordination set∆i for agentAi

is constructed as follows: first, all empty subsetsT j
i in

{T j
i }k

j=1 are removed. Next, for everyj = 1, . . . , k − 1
and for every pair of taskst, t′: if t ∈ T j

i andt′ ∈ T j+1
i ,

the precedence constraint(t, t′) is added to∆i.
To obtain these setsT j

i , each agentAi executes the
following algorithmic scheme:

Algorithm 1

Input: a composite task (Ti,≺i) assigned to agent Ai

Output: a linearly ordered partition (T 1
i , . . . , T k

i) of Ti

begin
1. let k := 0
2. while Ti 6= ∅ do

2.1. k := k + 1
2.2. ask the blackboard for the subset Fi ⊆ Ti of
tasks that are prerequisite-free, i.e., those tasks t in
Ti for which there exists no t′ ∈ Tj , j 6= i, such
that t′ ≺ t
2.3. T k

i := Select SubsetFrom(Fi)
2.4. if T k

i 6= ∅ then
2.4.1. Let Ti = Ti − T k

i

2.4.2. Send the set T k
i to the blackboard

2.5. else
2.5.1. k := k − 1

3. return (T 1
i , . . . , T k

i)
end

In each round of the algorithm, agentAi splits
off a (possibly empty) set of tasksT k

i from Ti. In
Step 2.2, agentAi asks the blackoard to compute the
set Fi of tasks in Ti that are free of prerequisites.
In Step 2.3,Ai makes a decision which subsetT k

i

of F i it will split off in this round. Note that if no
deadlock occurs, each agentAi is able to determine its
subset of coordination arcs. Observe that if all agents
repeatedly decide to ‘split off’ the empty set, i.e.,
they wait until they can choose a subtaskT j

i as large
as possible, one or more agent processes might deadlock.

Recall that tasks in a blockT j
i must precede all tasks

in the block T j+1
i . In fact, the set∆i of additional

constraints for agentAi is specified by:

∆i =
k−1⋃
j=1

T j
i × T j+1

i

Thus, the more blocks the partitioning contains, the more
restrictions are placed on the set of tasks to be per-
formed. Since more precedence restrictions also restrict
the freedom of planning of an agent, and thereby reduce
the possibility to find cheaper plans, an agent might be
reluctant to split its set of tasks too soon. Instead, it
might prefer to postpone splitting off a block untilFi is
sufficiently large. If possible, an agent would thus prefer
to adopt alazy partitioning strategy, that is: an agent
would chooseT j

i = ∅ in every round of Algorithm 1,
unlessFi = Ti, in which case it choosesT j

i = Ti.
Clearly though, if all agents are lazy (and≺inter is non-
empty), then the algorithm deadlocks.

To ensure coordination, more cooperative strategies
are needed. The opposite of a lazy agent is adiligent
agent: in every round of Algorithm 1, a diligent agent
choosesT j

i = Fi. If all agents are diligent, the algorithm
never deadlocks, and a coordination solution is found.
Moreover, we can give some guarantee with regard to the
worst-case performance of the partitioning, as it is not
hard to see that if all agents are diligent, then the depth
of each agent’s partitioning (the valuek for T 1

i , . . . T k
i)

is at most the minimum of|Ti| and the depth of the
partial order of the complete taskT .

In some cases, when a subset of the agents are
lazy, and the rest of the agents are diligent, we can
still guarantee that Algorithm 1 runs deadlock-free. The
dependencies between agents can be visualized in the
agent dependency graph. The agent dependency graph
is a directed graphG = (V,E), whereV = A (the set
of agents), ande = (Ai, Aj) ∈ E iff there exist taskst
and t′ such thatt ∈ Ai, t′ ∈ Aj , andt ≺ t′. If the agent
dependency graph restricted to the set of lazy agents is
acyclic, then Algorithm 1 will not deadlock.

The worst-case performance of the coordination-by-
partitioning approach, measured in terms of the cost
of the resulting plan, is bounded by the depth of the
partitioning each agent creates for his set of tasks. If
an agentAi splits his set of tasksTi into k segments
T 1

i , . . . , T k
i , then the cost of the combined plan for allk

segments can be at mostk times as high as a plan for his
unconstrained set of tasksTi. As an example, consider

the case where an agent only has two taskst1 andt2. If
there exists no precedence constraint betweent1 andt2,
then we might imagine that an agent can execute both
tasks in parallel. By introducing the constraintt1 ≺ t2,
the tasks can no longer be executed in parallel, so the
cost of the plan may increase — but with no more than
the cost of the original plan, since at most all work done
on t1 must be redone fort2.

In case all agents are diligent, this means that no agent
can have a worst-case plan cost higher thand times his
optimal plan, withd the depth of partial order of the
composite taskT .

V. A PPLICATION TO COORDINATION IN

MULTI -MODAL LOGISTICS

Our approach enables existing stand-alone planners
to be used in solving planning problems that require
the joint effort of several planners that are dependent
upon each other. In this section we will show how our
coordination method can be used to compose such a
multi-agent planning system for logistic planning.

The logistics domain comprises transportation of
packages in an infrastructure consisting of airplanes,
trucks, cities and locations. Each city consists of a set of
locations, one of which is the city’s airport. Within a city,
trucks can transport packages; between cities, airplanes
can transport packages. The aim is to make a plan for
picking up a set of packages at their source location and
to deliver them at their destination location (which may
be located in a different city).

Intra-city orders, i.e., the transportation of packages
with source and destination in the same city, can be
carried out by a single truck. Inter-city orders, however,
may require cooperation among airplanes and trucks. For
example, suppose a package must be transported from
locationA in city Cx to locationB in city Cy: a truck
will drive the package fromA to the airport of cityCx,
then a plane will fly the package to the airport of cityCy,
and finally a truck will deliver the package to location
B.

In the world’s second planning & scheduling com-
petition, hosted by the AIPS’00 conference [6], several
planning domains were to test the competitors’ planning
systems. All AIPS’00 competitors use a centralized
approach in which one planning system computes the
actions for all vehicles in the infrastructure. As a result,
solving the larger instances requires a complex compu-
tational problem to be solved. Most of the systems gave
up on the larger-sized problem instances. Only a few
planners were able to solve all instances.

We applied the coordination method specified by Al-
gorithm 1 to these logistic problems. The airplanes were
configured as one coalition using a lazy strategy and each
truck adopted a diligent strategy. This approach allows
single-agent planners to be reused in the multi-agent
planning context; we assigned very simple route planners
to both the trucks and the plane agents and applied the
coordination approach to allow these planners to plan
concurrently and independently from each other. The
airplanes’ lazy strategy guarantees that optimal airplane
plans can be found. But surprisingly, in this benchmark
set, even though trucks adopt the diligent strategy, they
are still allowed to execute their optimal plans. The
result is that if the airplane coalition and the trucks use
optimal solvers for their local planning problems, then
the resulting joint plan will also be optimal.

The local planning problems are of such a small
size that the whole coordination approach including all
local planning activities runs extremely fast. Figure 3
shows the cpu time needed by our coordination approach
compared to the top three hand-tailored planning systems
of the competition. Our cpu times were obtained using
optimal local solvers for the smaller instances; for the
larger instances, we used local approximations for the
route planning problems. In spite of using local approx-
imations, we still outperformed the AIPS competitors in
terms of plan quality, as shown in Figure 4. Although
TALplanner and SHOP produce plans of comparable
quality, System-R produces considerably longer plans,
and its results do not fit in the graph of Figure 4.

VI. RELATED AND FUTURE WORK

Except for the multi-agent planning methods already
mentioned in the introduction, our approach is also
closely related to the work of Shehory and Kraus [7]
where they consider a set of tasks with possibly a set of
precedence constraints that have to be distributed among
(coalitions) of agents capable of performing certain
subsets of tasks. However, an important difference with
our approach is that Shehory and Kraus assume that
performing these tasks requires no planning activity.10

Hence, coordination can be achieved simply by assigning
tasks to agents. Therefore, their approach is geared
towards finding the best allocation of tasks to agents.
In our approach, however, we assume that a set of
interrelated tasks has already been allocated to agents
and we concentrate on methods to ensure coordination

10More accurately, they assume no difference between planning for
one task and planning for two or more tasks.

0.01

0.1

1

10

100

1000

41 46 51 56 61 66 71 76 81 86 91 96

number of orders

cp
u

tim
e

(s
ec

)

system-R SHOP TALplanner coordination

Fig. 3. CPU times required by the hand-tailored planning systems
to solve the additional track of logistic problems.

while leaving the agents completely free in the planning
of their set of tasks.

Regarding future work, more work needs to be done
on characterizing stable strategies for planning agents.
For the logistic benchmark problems of the AIPS’00,
we have identified stable agent strategies for Algorithm
1: a truck will choose the diligent strategy, a plane will
choose the lazy strategy, allowing each agent to compute
its optimal plan. For general composite tasks, or even for
general multi-modal logistic instances, it is likely that
we have to come up with negotiation mechanisms in
order to establish stability. Rosenschein and Zlotkin [8]
summarize the challenge faced by designers of such
negotiation mechanisms: the negotiation protocol must
induce agents to choose strategies that are globally
desirable, yet individually rational. In a coordination-by-
partitioning algorithm such as Algorithm 1, a globally
desirable strategy must ensure that the algorithm termi-
nates, and consequently returns a coordination set. An
individually rational strategy must make it worthwhile
for an agent to accept additional precedence constraints.

REFERENCES

[1] E. Ephrati and J. S. Rosenschein, “Multi-agent planning as
the process of merging distributed sub-plans,” inProceedings
of the Twelfth International Workshop on Distributed Artificial
Intelligence (DAI-93), May 1993, pp. 115–129. [Online].
Available: http://www.cs.huji.ac.il/labs/dai/papers.html

[2] E. H. Durfee and V. R. Lesser, “Partial global planning: a
coordination framework for distributed hypothesis formation,”
IEEE Transactions on systems, Man, and Cybernetics,

230

330

430

530

630

41 46 51 56 61 66 71 76 81 86 91 96

number of orders

st
ep

s

SHOP TALplanner coordination

Fig. 4. The number of steps (actions) required by the hand-tailored
planning systems to solve the additional track of logistic problems.

vol. 21, no. 5, pp. 1167–1183, 1991. [Online]. Available:
http://citeseer.nj.nec.com/durfee91partial.html

[3] K. S. Decker and V. R. Lesser, “Designing a family
of coordination algorithms,” in Proceedings of the
Thirteenth International Workshop on Distributed Artificial
Intelligence (DAI-94), 1994, pp. 65–84. [Online]. Available:
http://citeseer.nj.nec.com/decker95designing.html

[4] G. Even, J. Naor, B. Schieber, and M. Sudan, “Approximating
minimum feedback sets and multicuts in directed graphs,”Algo-
rithmica, vol. 20, no. 2, 1998.

[5] P. Seymour, “Packing directed circuits fractionally,”Combina-
torics, vol. 15, 1995.

[6] F. Bacchus, “Aips’00 planning competition (artificial planning
and scheduling 2000),””AI” Magazine, 2001.

[7] O. Shehory and S. Kraus, “Methods for task allocation via agent
coalition formation,”Artificial Intelligence, 1998.

[8] J. S. Rosenschein and G. Zlotkin,Rules of encounter: Designing
Conventions for Automated Negotiation among Computers. MIT
Press, 1994.

